Proceedings of the Fourth International Symposium on Models for Plant Growth and Control in Greenhouses:

Modeling for the 21st Century - Agronomic and Greenhouse Crop Models

Editors
J. Heinrich Lieth
Lorence R. Oki

Acta Horticulturae
Number 593

Editors

J. Heinrich Lieth
Lorence R. Oki

Beltsville, Maryland, USA
25-29 March 2001

ISHS Commission on Protected Cultivation

Acta Horticulturae 593
November 2002
Artwork and photo credits

Top 5 photos: file photos provided by USDA ARS NRI,
Bottom 2 photos: J.H Lieth
Collage of photos and figures from various manuscripts in the book was created by J.H. Lieth
Modeling for the 21st Century: Agronomic and Greenhouse Crop Models
Joint Meeting of the Biological Systems Simulation Group and International Society for Horticultural Science Commission on Protected Cultivation

Co-convenors:

Dr. Jeff Baker
United States Department of Agriculture, Agricultural Research Service, Beltsville Maryland, USA

Dr. Heiner Lieth
University of California, Davis, California, USA

Local Organizing team:

Dr. D. Timlin
United States Department of Agriculture, Agricultural Research Service, Beltsville Maryland, USA

Dr. V. R. Reddy
United States Department of Agriculture, Agricultural Research Service, Beltsville Maryland, USA

International Scientific Committee:

Dr. Hugo Challa
Wageningen Agricultural University, Wageningen, The Netherlands

Dr. Rolf U. Larsen
The Swedish University of Agricultural Sciences, Alnarp, Sweden

Dr. Hans-Peter Liebig
University of Hohenheim, Stuttgart-Hohenheim, Germany

Dr. Paul Fisher
University of New Hampshire, Durham, New Hampshire, USA

Dr. James W. Jones
University of Florida, Gainesville, Florida, USA
Preface

This volume of Acta Horticulturae is the proceedings of a symposium held jointly by the two groups: the Biological Systems Simulation Group (BSSG) and the International Society for Horticultural Science (ISHS) working group "Plant Growth, Environmental Control and Greenhouse Environment". The former consists of US scientists (mostly agronomists) who typically work on models related to biological and agricultural systems, while the latter typically focuses on greenhouse crops. The meeting was entitled "Modeling for the 21st Century: Agronomic and Greenhouse Crop Models" and was organized jointly by Dr Jeff Baker (USDA/ARS, Beltsville) and Prof Heiner Lieth (University of California). Approximately 90 scientists attended the meeting (50% as ISHS members, 50% as BSSG members).

The meeting focused on basic aspects of crop model development as well as creation and dissemination of applications. The former types of presentations were scheduled for early in the meeting while the more-applied aspects were presented later. Each day consisted of various oral sessions in the morning and early afternoon, concluding with an overview/discussion session where the participant could raise questions and discuss issues related to crop modeling. This facilitated discussions between those working on field crops and those working on greenhouse crops.

All participants had the option of contributing through poster or oral presentation. Those who chose to do so, had the option of submitting a manuscript reflecting the content of the presentation. Each manuscript was reviewed by at least two scientists. Reviewers were generally selected based on their membership in either the BSSG or ISHS, but generally independently of whether or not they attended the meeting.
Table of contents

Preface

Table of Contents

Predicting the Weekly Fluctuations in Glasshouse Tomato Yields
S. R. Adams
8

Ultrasonic Acoustic Emission Of Broccoli (*Brassica oleracea* L. convar Botryis var. *Italica Plenck*) To Indicate Water Stress
M.W. Bormann and H.-P. Liebig
14

Effect of Light Intensity, Plant Density, and Flower Bud Removal on the Flower Size and Number in Cut Chrysanthemum
S.M.P. Carvalho, E. Heuvelink, and O. van Kooten
22

Modeling the Effect of Diffuse Light on Canopy Photosynthesis in Controlled Environments
J. Cavazzoni, F. Tubiello, T. Volk, and O. Monje
30

Crop Models For Greenhouse Production Systems
H. Challa
39

The Prediction of Ventilation Rates In Greenhouses Containing Rose Crops
E. Dayan, J. Dayan, and Y. Strassberg
48

Rose Grow: A Model to Describe Greenhouse Rose Growth
E. Dayan, E. Presnov, M. Fuchs, and J. B. Asher
57

A Mathematical Model For Visual Quality of Potplants
M.W.C. Dijkshoorn-Dekker
68

A Model to Optimise Nitrogen Supply in Soil-Grown Greenhouse Lettuce Crops
A.J. Escobar-Gutiérrez and I.G. Burns
75

Modeling and Control For Closed Environment Plant Production Systems
D.H. Fleisher and K.C. Ting
83

Modelling Intra-Cellular Control of Nitrate Uptake and Long Distance Transport in Plants
M.P.N. Gent
91

Effects of EC and Fertigation Strategy on Water and Nutrient Uptake of Tomato Plants
M. Heinen, L.F.M. Marcelis, A. Elings, R. Figueroa, and F.M. del Amor
99
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Integration of Monitoring and Decision Support Systems in Dutch Horticulture</td>
<td>108</td>
</tr>
<tr>
<td>P.G.H. Kamp and W.M.P. van der Veen</td>
<td></td>
</tr>
<tr>
<td>Parameterization and Testing of a Coupled Model of Photosynthesis-Stomatal Conductance for Greenhouse Rose Crop</td>
<td>113</td>
</tr>
<tr>
<td>S.-H. Kim and J.H. Lieth</td>
<td></td>
</tr>
<tr>
<td>Modeling Photosynthesis of Heterogeneous Rose Crop Canopies in the Greenhouse</td>
<td>121</td>
</tr>
<tr>
<td>S.-H. Kim and J.H. Lieth</td>
<td></td>
</tr>
<tr>
<td>Evaluation of Photosynthate Accumulation and Distribution and Radiation Use Efficiency in Roses in Relation to Irradiance and Night Temperature</td>
<td>131</td>
</tr>
<tr>
<td>W.S. Kim and J.S. Lee</td>
<td></td>
</tr>
<tr>
<td>Modeling Temperature Effects on Crop Photosynthesis At High Radiation in a Solar Greenhouse</td>
<td>140</td>
</tr>
<tr>
<td>O. Körner, H. Challa and R.J.C. van Ooteghem</td>
<td></td>
</tr>
<tr>
<td>Modelling Periodic Plant Growth Using sine and cosine Functions</td>
<td>149</td>
</tr>
<tr>
<td>R.U. Larsen and A. Kosiba</td>
<td></td>
</tr>
<tr>
<td>A Simulation Study on the Interactive Effects of Radiation and Plant Density on Growth of Cut Chrysanthemum</td>
<td>155</td>
</tr>
<tr>
<td>J.H. Lee, E. Heuvelink, and H. Challa</td>
<td></td>
</tr>
<tr>
<td>Crop Modelling and Yield Prediction for Greenhouse Grown-Lettuce</td>
<td>163</td>
</tr>
<tr>
<td>W.C. Lin</td>
<td></td>
</tr>
<tr>
<td>Modeling Field Crop and Rangeland Canopy Development, Structure, and Dynamics</td>
<td>171</td>
</tr>
<tr>
<td>G.S. McMaster</td>
<td></td>
</tr>
<tr>
<td>Application and Testing of GPFARM: A Farm and Ranch Decision Support System for Evaluating Economic and Environmental Sustainability of Agricultural Enterprises</td>
<td>178</td>
</tr>
<tr>
<td>G.S. McMaster, J.C. Ascough II, G.H. Dunn, M.A. Weltz, M.J. Shaffer, D. Palic, B.C. Vandenber, P.N.S. Bartling, D. Edmunds, D.L. Hoag, and L.R. Ahuja</td>
<td></td>
</tr>
<tr>
<td>The Relationship Between Chrysanthemum Flower Diameter and Light Conditions in the Greenhouse - A Modelling Approach</td>
<td>186</td>
</tr>
<tr>
<td>M. Nothnagl and R.U. Larsen</td>
<td></td>
</tr>
<tr>
<td>Coherence and Synchronization of Rose Development</td>
<td>193</td>
</tr>
<tr>
<td>E. Presnov, E. Dayan, M. Fuchs, Z. Plaut, and E. Matan</td>
<td></td>
</tr>
</tbody>
</table>
Modeling and Validating Cotton Leaf Area Development and Stem Elongation
K.R. Reddy and M.L. Boone
201

Effects of Temperature and Photoperiod on Development Rates of Nine Soybean Varieties in Mississippi Valley
V.R. Reddy, L.B. Pachepsky, F.D. Whisler
209

Prediction of Solar Radiation From Air Temperature
A.G. Richardson, K.R. Reddy, and M.L. Boone
218

Simultom: A Diagnostic Tool for Greenhouse Tomato Production
C. Sauviller, W. Baets, H. Pien, and R. Lemeur
227

Modeling of Stomatal Conductivity as a Variable for Environmental Control In Greenhouses
U. Schmidt
236

Nutrients and Toxic Substances Accumulation in the Plant and their Effect on Uptake: A Simulation Study in Hydroponics
M. Silberbush
245

Models for Nitrogen Uptake and Related Quality Assurance in Horticultural and Agronomic Crop Production
S. Zerche, U. Druege, and R. Kadner
254